
RepoDoc User Guide
www.archimetes.com

Version 1.2.20325.1680, 2017-04-26

Table of Contents
About . 1

Installing and running. 2

Add-in mode . 2

Standalone mode . 2

Generating documents . 4

Editing templates . 6

Package browser . 7

License key . 8

Creating templates . 10

Sections. 16

Packages. 17

Elements . 17

Elements containing elements (child elements) . 18

Diagrams . 20

Other repository items . 21

Variables . 21

Text . 22

Advanced topics . 23

Notes format . 23

Filter attributes. 23

Using reserved characters . 24

Convenience variables . 24

Multiple repository iterations. 25

Custom queries . 26

Generator profiles . 26

Escape sequences . 27

Post-processing. 27

Template syntax reference. 28

Global variables . 28

Sections. 29

Package . 30

Element . 31

Diagram . 33

PresentationDiagram . 34

DiagramObject . 35

Attribute. 37

Operation. 38

Parameter . 40

Scenario . 40

ScenarioStep . 41

Constraint . 42

Connector . 42

ConnectorEnd. 43

Tag. 46

Model . 47

RDQuery. 47

RDQueryRow . 47

RDPut . 48

RDRem . 48

About
RepoDoc is a powerful document generator for Sparx Systems Enterprise Architect able to produce
a variety of document formats using templates written in any text editor. These include HTML,
LaTeX, Markdown or AsciiDoc documents, but also CSV, XML or JSON files, GraphViz graphs, SVG
diagrams and even source codes in different languages. With RepoDoc you can also generate PDF
documents easily using the built in post-processing feature.

1

Installing and running
Download RepoDoc installer and follow the installation steps on the screen. Please note, that
RepoDoc has following requirements for running:

• Microsoft Windows 7 or later, (32/64 bit),

• Microsoft .NET Framework 4.5 or later,

• Enterprise Architect v1305 or later installed,

RepoDoc works with following repository types:

• MySQL

• PostgreSQL

• MS SQL Server

• Firebird (database repository or local *.feap filed base repositories)

• Oracle

• JET (local *.eap file based repositories)

For initial setup and configuration of connection to your repository, please follow
the Sparx Systems Help.

Once you have finished the installation you can use RepoDoc either as an Enterprise Architect add-
in or as a standalone application.

Add-in mode
Start the add-in from the ribbon by navigating to the Extensions → RepoDoc → Control panel option

or

using the project browser by right-clicking on a package in the package browser and selecting
Extensions → RepoDoc → Control panel option.

 The Add-in mode is not supported for EALite edition of Enterprise Architect.

Standalone mode
Standalone application can be started from the command line. When you have your Enterprise
Architect installed and configured, you can run RepoDoc from Windows command line with the
following command:

C:\Program Files (x86)\Archimetes\RepoDoc\RepoDoc.exe [ConnectionString]

Start the application with the connection string (or the full path to your .eap or .feap file) to connect

2

http://www.archimetes.com/material/RepoDoc.msi

to your repository.

3

Generating documents
RepoDoc follows the same principles as the default document generator included in the Enterprise
Architect and as such needs two kinds of inputs to generate a document:

1. Starting point in the repository determining the part of your model you wish to document i.e. a
root package.

2. Document template that tells RepoDoc what to take out from the repository and where to put it
into a document.

RepoDoc comes with several pre-installed templates. These templates are stored in
the C:\Program Files (x86)\Archimetes\RepoDoc\DocumentTemplates\Input directory
or you can download the templates from our website. The document templates
have rdt file extension.

To demonstrate the document generation we’ll use the standard EAExample.eap model that is
shipped with every Enterprise Architect and is typically stored in the c:\Program Files (x86)\Sparx
Systems\EA directory. To generate a document, based on this model, please follow these steps:

1. Open the EAExample.eap model in Enterprise Architect and select the UML Modeling package in the
Project browser.

2. Right-click on the selected package and choose Extensions → RepoDoc → Control Panel. RepoDoc
starts and presents itself with the Document generator form.

3. Select the About dialog and click the Download license key button if your are using RepoDoc for
the first time. Then switch back to the Document generator.

4. Click the … button in the first row and select the UML-model-documentation.html.rdt template
from the dialog.

5. Click the Generate document button. RepoDoc generates a HTML documentation for the UML
Modeling package and outputs information similar to the one pictured below.

4

http://www.archimetes.com/material/RepoDocDocumentTemplates.zip

The generated document is stored in the Documents directory (the path may differ based on your
username) and should look like the one pictured below.

Additional functionality of the document generator includes:

• Verify template button starts template verification without generating a document. In this case
the connection to the repository is not necessary.

• Edit template button opens the selected template in a text editor defined by the user (please see
the Application settings for further details).

5

• Generator profile button >> navigates to the generator profile editor which allows you to modify
the way the repository is processed or to set a document post-processing command.

• Package browser button >> navigates to the Package browser which allows you to choose a
different package to document without closing the RepoDoc. The name of the root package is
displayed in the textbox together with the package GUID.

• View document button opens the generated document in the associated application.

Editing templates
RepoDoc templates are just plain text files and you can use any text editor to edit them. To make the
authoring and reading of the templates easier, syntax highlighting and keyword autocompletion for
RepoDoc templates is currently implemented for Notepad editor. Follow these instructions to install
syntax highlighting for RepoDoc templates in Notepad:

• start Notepad++,

• select Language → Define Your Language → Import and import the file RepoDocTemplateUDL.xml.
You’ll find the file in c:\Program Files (x86)\Archimetes\RepoDoc\NppExtensions directory,

• restart Notepad++ and after it a new Language "RepoDocTemplate" should appear inside the
Language menu,

• open any RepoDoc template, it should colour the syntax as on the screenshot above.

Follow these instructions to install keyword autocompletion for RepoDoc templates in Notepad++:

• stop Notepad++ if it’s running,

• copy RepoDocTemplate.xml c:\Program Files (x86)\Archimetes\RepoDoc\NppExtensions into
<Notepad++ root folder>\plugins\API\ directory,

• start Notepad++ and open any RepoDoc template. The output should look like the one pictured
below.

6

Change the path to your favorite editor in the Application settings. Your editor will
be used to open the templates when clicking Edit template button in the Document
generator form.

Package browser
The package browser lets you choose a root package from the model. Please note that the browser
is visible only when you invoked RepoDoc with an opened project in the Enterprise Architect or
with a ConnectionString argument (in case you are using it in standalone mode).

7

Select a package you wish to start with, right click on it and choose Set as new root package.

License key
RepoDoc needs a valid license key for document generation. The About dialog shows product and
license key information.

8

Time limited license key is available for free and can be simply obtained by clicking the Download
license key button. Please contact info@archimetes.com for further information.

9

mailto:info@archimetes.com

Creating templates
RepoDoc comes with several pre-installed document templates. You can modify these templates or
create new templates easily in any text editor. The RepoDoc template is just a text file with
following instructions:

1. which repository items to look for (packages, elements, diagrams etc.)

2. what information about these items (name, notes, author, stereotype) to put into the
document

For this purpose, the template is divided into one or more sections (which repository items to look
for) whereby each section may contain (among some text) one or more variables (what
information about these items to put into the document).

The RepoDoc makes use of the Enterprise Architect class model and being familiar
with it is an advantage when writing templates.

A small template example follows:

This is our first RepoDoc template example, containing one Package section and one Element section.

[Package]
Package name is "$Package.Name"
[Element $Element.Type=="Class"]
Element name is "$Element.Name"
[/Element]
[/Package]

This template tells RepoDoc to do following:

1. Put the name of each package you encounter in the repository into the document.

2. Put the name of each element (that is type of Class) in each encountered package into the
document.

Sections are written with an opening and a closing tag, with the content in
between. Variables are marked with the $ (dollar) sign.

When iterating repository, RepoDoc begins always with the root package you’ve selected and then
continues with all of its child packages. Long story short, taking the EAExample.eap model (that’s
shipped with Enterprise Architect) and selecting XML Schema as the root package

10

http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation_and_scripting/reference.html

we get following document:

11

This is our first RepoDoc generated document based on our first template example.

Package name is "XML Schema"
Package name is "Schema"
Element name is "Account"
Element name is "LineItem"
Element name is "Order"
Element name is "ShoppingBasket"
Element name is "StockItem"
Element name is "Transaction"
Package name is "Schema_A"
Element name is "fName"
Element name is "lName"
Package name is "Schema_B"
Element name is "mName"
Element name is "Person"

The document contains the names of the packages and elements under the XML Schema package
(including the root package itself). As you can see, the content of Package section has been evaluated
(put into the document) for each package and the same applies to the Element section. This
evaluation logic is the same for (almost) all sections RepoDoc works with. The content of the section
is evaluated as many times, as there are corresponding items in the repository (in our example
these items are the packages and elements). You can see the results of the evaluation procedure in
the document below. It contains the packages (as in the Model) and the elements in each
encountered package are also named. The OrderStatus element, being an Enumeration, is not in the
document as we requested only Class type elements via a filter attribute (don’t worry, we’ll get to
filter attributes later).

Please observe that the lines containing section tags have not been put into the
document. RepoDoc automatically removes lines consisting purely of section tags
and whitespace characters. Following templates:

[Package]
Package name is "$Package.Name"
 [Element $Element.Type=="Class"]
Element name is "$Element.Name"
 [/Element]
 [/Package]

[Package]Package name is "$Package.Name"
[Element $Element.Type=="Class"]
Element name is "$Element.Name"
[/Element][/Package]

produce therefore the same output as our first template example.

By now, you have learned that using sections, you can control, what parts of the repository will

12

be documented because section content is evaluated and put into the document for each
corresponding item (package, element, diagram etc.) found in the repository.

Summarizing the above, you can document attribute names for each element. Looking at the
sample EAExample.eap model

13

you can see that many classes have some attributes defined. You can document those by adding an
Attribute section to the template:

14

This is our second RepoDoc template example, containing one Package section, one Element section
and one Attribute section.

[Package]
Package name is "$Package.Name"
[Element $Element.Type=="Class"]
Element name is "$Element.Name"
[Attribute]
Attribute name is "$Attribute.Name"
[/Attribute]
[/Element]
[/Package]

Using this template you get a slightly larger document.

15

This is our second RepoDoc generated document based on our second template example.

Package name is "XML Schema"
Package name is "Schema"
Element name is "Account"
Attribute name is "billingaddress"
Attribute name is "closed"
Attribute name is "deliveryaddress"
Attribute name is "emailaddress"
Attribute name is "name"
Element name is "LineItem"
Attribute name is "quantity"
Element name is "Order"
Attribute name is "date"
Attribute name is "deliveryinstructions"
Attribute name is "ordernumber"
Element name is "ShoppingBasket"
Attribute name is "shoppingbasketnumber"
Element name is "StockItem"
Attribute name is "author"
Attribute name is "catalognumber"
Attribute name is "costprice"
Attribute name is "listprice"
Attribute name is "title"
Element name is "Transaction"
Attribute name is "date"
Attribute name is "ordernumber"
Package name is "Schema_A"
Element name is "fName"
Element name is "lName"
Package name is "Schema_B"
Element name is "mName"
Element name is "Person"
Attribute name is "firstName"
Attribute name is "lastName"

As of now we have identified all three basic parts of a template that are summarized below.

Sections
Sections are part of the template written with an opening tag and a closing tag, with the content in
between. A section tag is composed of the name of the section, surrounded by square brackets. A
closing tag also has a slash after the opening bracket, to distinguish it from the opening tag. Each
section may contain either ordinary text, variables or one or more subsections or combination of
the former (of course there are some rules but we’ll get to them later). There are some special
purpose sections, but typically the section names correspond to the classes in the Enterprise
Architect class model. Following the class model and relationships defined for the classes, it’s clear
that there must be some similar hierarchy of sections and rules exist on how the sections may be
nested within each other. For example a package may contain one or more elements or diagrams,

16

http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation_and_scripting/reference.html
http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation_and_scripting/reference.html

an element may have attributes or operations (which may in turn have parameters) and so on.
Since there are many classes defined by the Enterprise Architect so there are many sections you
may use. Have a look at Template syntax reference for all currently supported sections.

Sections with a corresponding class are evaluated for each corresponding item found in the
repository. There are however some specific points to be addressed as how these items are found
and what they can represent.

Packages

Package section is evaluated for each package found in the repository starting with the root package
defined by the user. If a package has child packages, they are evaluated before evaluating following
package on the same level. User may choose to exclude some packages from the final document by
specifying one or more filter attributes for the Package section.

Elements

Element section is evaluated for each element contained in or associated with the package. At first,
this is straightforward, but there’s more information in the model as the Project browser shows.
Technically speaking, the element section contains:

1. The associated element object (or so called package element) from the Package class.

2. Element collection defined in the Package class.

Modifying our first example, we will document all elements (please note the filter attribute has
been removed) with their types:

This is 3rd RepoDoc template example, containing one Package section and one Element section
without the filter attribute.

[Package]
Package name is "$Package.Name"
[Element]
Element name is "$Element.Name" and element type is "$Element.Type"
[/Element]
[/Package]

we get following document:

17

http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation_and_scripting/package_2.html

Package name is "XML Schema"
Element name is "XML Schema" and element type is "Package"
Package name is "Schema"
Element name is "Schema" and element type is "Package"
Element name is "" and element type is "Note"
Element name is "Account" and element type is "Class"
Element name is "LineItem" and element type is "Class"
Element name is "Order" and element type is "Class"
Element name is "OrderStatus" and element type is "Enumeration"
Element name is "ShoppingBasket" and element type is "Class"
Element name is "StockItem" and element type is "Class"
Element name is "Transaction" and element type is "Class"
Package name is "Schema_A"
Element name is "Schema_A" and element type is "Package"
Element name is "fName" and element type is "Class"
Element name is "lName" and element type is "Class"
Package name is "Schema_B"
Element name is "Schema_B" and element type is "Package"
Element name is "" and element type is "Note"
Element name is "mName" and element type is "Class"
Element name is "Person" and element type is "Class"

The result is now slightly different and shows not only how the sections work, but also how the
information about elements within Enterprise Architect is stored:

1. The document contains the associated element for each package. It has the same name as the
package itself, but has a distinct type (see the Type property of the Element class). The package
element is always documented before other elements contained in the package on the same
level.

2. The document contains elements with empty name of type "Note". This is because Notes in the
diagrams are internally represented as nameless elements and Enterprise Architect does not
show them directly in the Project browser.

Simply use filter attributes to filter out the package element or other elements you
do not need, like those representing Notes in the diagrams.

Elements containing elements (child elements)

Some elements may have child elements representing sub components, ports or interfaces. There is
no special section for child elements in RepoDoc instead the Element section evaluates not only the
element contained in the package but also all of its child elements before evaluating next element
(in the package). Looking at the model below.

18

http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation_and_scripting/element2.html

You can see that three elements in the Components package have one child element (in this case it’s
a Port). Starting from the highlighted Components package and using the third template you get
following document:

19

Package name is "Components"
Element name is "Components" and element type is "Package"
Element name is "Charging Unit - ADP2291" and element type is "Class"
Element name is "charger" and element type is "Port"
Element name is "Codec with Amplifier - TLV320AIC3107" and element type is "Class"
Element name is "Li-Ion Battery Monitoring System - AD7230" and element type is
"Class"
Element name is "chargeMonitor" and element type is "Port"
Element name is "Memory - MT42L32M64D2KH-25" and element type is "Class"
Element name is "Panasonic Li-Ion CGR18650AF" and element type is "Class"
Element name is "chargeIndicator" and element type is "Port"
Element name is "Processor - TMS320VC5507" and element type is "Class"
Element name is "RS232" and element type is "Class"
Element name is "Touch-screen" and element type is "Class"
Element name is "USB - PL-2528" and element type is "Class"

You can see that the charger child element has been evaluated before Codec with Amplifier element,
because charger is child element of Charging Unit element. The same applies for child elements
chargeMonitor and chargeIndicator.

Diagrams

Diagrams can be documented using the Diagram section. Diagrams may be contained in a package or
in an element and the same applies to the Diagram section.

Diagram images

Diagram images may be obtained in two ways:

• Using the $Diagram.ImagePng variable which evaluates to a base64 encoded diagram image in
PNG format.

• Using an empty Diagram section. Normally empty sections (containing only opening and closing
tag) do nothing, but for Diagram section, this is different. An empty Diagram section
([Diagram][/Diagram]) causes the image (in PNG format) to be written directly to a file. The file is
stored in the same directory as the document and its name follows this naming convention:
Diagram_<DiagramID>.png.

Diagram objects

Each diagram typically has one or more objects. These diagram objects may be documented using
the DiagramObject section. The DiagramObject section is evaluated for each diagram object in the
diagram. The variables defined in the DiagramObject section (and its subsections) are (almost)
identical to the variables defined for the Element section. This is because each diagram object is in
fact just an element modelled somewhere in the repository. Additionally the object contains
position information. Example below documents diagram object names in all diagrams and in all
packages (starting from the root package).

20

This is RepoDoc template example containing one Package section and one Diagram section.

[Package]Package name is "$Package.Name"
[Diagram][DiagramObject]DiagramObject (i.e. Element) name is "$DiagramObject.Name" and
DiagramObject type is "$DiagramObject.Type"
[/DiagramObject][/Diagram][/Package]

Other repository items

Other repository items like attributes, operations, operation parameters etc. have their
corresponding section and variables. For full reference see Template syntax reference for all
possible sections in RepoDoc and Enterprise Architect Object Model.

Variables
Variables identify properties of repository items that will be documented (i.e. became part of the
document). They are marked with the $ (dollar) sign and correspond (in most of the cases) to the
properties (sometimes called Attributes in the official Enterprise Architect documentation) of the
repository classes that the user wishes to document. Their name is composed of the Class name and
Property name delimited with . (dot) i.e. <ClassName>.<Property>. Since each section corresponds to
a specific class it’s only logical that the variable is defined and its value is known only within its
section or within the subsection(s) of the section for which it is defined. Long story short, have a
look at following examples.

This is a valid template.

[Package]List of elements for package: $Package.Name
[Element]$Element.Name
[/Element][/Package]

This is also a valid template.

[Package]List of elements:
[Element]Element $Element.Name is within package $Package.Name
[/Element][/Package]

This template is not valid. Variable $Element.Name is misplaced because $Element.Name is only defined
within the Element sections (or its subsection(s)).

[Package]List of elements for package: $Package.Name
[Element][/Element]
$Element.Name
[/Package]

The properties for each class (or variables for section if you like) may be found in the Enterprise
Architect documentation e.g. Element class properties. Have a look at Template syntax reference
for a quick overview of all possible variables.

21

http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation_and_scripting/reference.html
http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation_and_scripting/element2.html

Text
Text is literally everything being not a variable or a section tag.

22

Advanced topics

Notes format
Notes for various items may contain format information, like font or colour information. RepoDoc
provides two variables when dealing with notes and formatting.

• $<ClassName>.Notes returns notes in plain text (without formatting). The colour or font format
information is lost, however the lists are preserved using indents and newlines.

• $<ClassName>.NotesHtml returns notes in html format with all the formatting expressed using
html tags.

Filter attributes
Filter attributes are means to exclude some items (packages, elements, diagrams, etc.) from the
final document. By default, RepoDoc puts content of each section that has a corresponding item in
the repository into the document. In some cases, it may be useful to exclude some items from the
repository and not document them. These may include items with some special stereotype(s) or
name(s). The names of filter attributes have the same format as variables and they are specified in
the section opening tag, together with a comparison operator and a value. The same restrictions
apply for attributes as for variables regarding their placement.

This RepoDoc template puts all elements with type Class into the document.

[Package][Element $Element.Type=="Class"]$Element.Name
[/Element][/Package]

This RepoDoc template puts only packages with at least one element into the document.

[Package $Package.ElementCount!="0"]$Package.Name
[/Package]

This RepoDoc template puts only packages with at least one element and one diagram into the
document.

[Package $Package.ElementCount!="0" $Package.DiagramCount!="0"]$Package.Name
[/Package]

If you specify multiple filter attributes they must be separated by a single space. Multiple attributes
are always evaluated using AND logical operators i.e. all must be true, otherwise the item will be
filtered out.

RepoDoc supports currently four comparison operators:

• == acts like a string comparison operator and evaluates to "true", if the specified attribute is
equal to the value specified by the user in between quotes,

23

• != acts like a negated string comparison,

• =~ acts like a regex matcher and evaluates to "true" if the specified attribute matches the regular
expression specified by the user in between quotes,

• !~ acts like a negated regex matcher.

Using reserved characters
RepoDoc uses some reserved characters that have special meaning during template processing and
document generation, namely:

• characters [and] and / mark the opening and closing section tags,

• character $ (dollar) is used as a variable marker,

• character " (double quotes) is used to denote the filter attribute value.

There are some rules to follow if you want to use these characters in your templates and suppress
their original meaning.

In ordinary text:

• characters [,], and $ must not stand alone and may be escaped as [[,]] and $$.

• character " may stand alone and does not need to be escaped.

In filter attribute values:

• character $ must not stand alone and may be escaped as $$.

• characters [,] may stand alone and do not need to be escaped.

• character " must not be used.

Convenience variables
RepoDoc follows Enterprise Architect class model and therefore many variables are easy to
understand for someone being familiar with Enterprise Architect. Beside these variables RepoDoc
provides some "convenience" variables, that are not directly defined in the class model. Some of
these are described below:

• $<ClassName>.<AnotherClassName>Count variables return number of items in child collections.
Typically the content of these collections is documented using sections e.g. elements in a
package are documented using the Element section. Nevertheless, in some cases it may be useful
to document the number of items in those collections, e.g. to document the number of attributes
for each class or number of methods in a component. For this purpose the item count in
collections (see the class model for full extent) are accessible using
$<ClassName>.<AnotherClassName>Count variables i.e. $Package.ElementCount,
$Element.OperationCount etc.

• $<ClassName>.IndexOf returns the index of the item in parent’s collection of items of the same
type. For example, if the item is an Element, then IndexOf returns either the index of the
element in the Elements collection from the parent package or the the index from the collection

24

http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation_and_scripting/reference.html

of child elements of the parent element if the currently evaluated element is a sub/embedded
element.

• $<ClassName>.CountOf returns the number of items in parent’s collection of items of the same
type. In most of the cases, this value is directly related to the structure of the repository as seen
in the Project browser. For example, if the item is an Element, then CountOf returns either the
number of elements in the parent package or the number of child elements of the parent
element if the currently evaluated element is a sub/embedded element.

• $DG.PackagePath global variable that returns a backslash delimited list of package names starting
with the root package and ending with the currently evaluated package.

• $DG.PackageDepth global variable that returns the depth for the currently evaluated package in
the tree of packages. The root package has always a depth equal to zero.

Multiple repository iterations
RepoDoc allows you to iterate all items in the repository more than once using a single template.
For example, you may wish first to output a list of packages in the repository and then a list of
elements for each package. The template syntax allows you to put a section more than once into the
template as long as the section relationships are obeyed. The following template makes the
described above possible:

List of packages:
[Package]
Package name is "$Package.Name"
[/Package]

List of elements for each package:
[Package]
List of elements for package "$Package.Name":
[Element]
$Element.Name
[/Element]
[/Package]

Using sections in the manner described above you’ll be able to document different parts of
repository with a single template. Following template uses filter attributes to output the
requirements and then the use cases in two different packages into a single document.

25

List of requirements:
[Package $Package.Name=="Requirements"]
Requirement name is "$Package.Name"
... Put your element or diagram section here ...
[/Package]

List of use cases:
[Package $Package.Name=="Use cases"]
Use case name is "$Package.Name"
... Put your element or diagram section here ...
[/Package]

Custom queries
While the sections corresponding to Enterprise Architect classes and their variables should provide
all information necessary for the document, there may be cases when information beyond these
sections is required. For such cases RepoDoc offers the RDQuery section which offers a Statement
attribute for the user’s custom SQL query. The following example demonstrates the usage of custom
queries.

[RDQuery $RDQuery.Statement="SELECT package_id, name FROM t_package"]
[RDQueryRow]
PackageID=$RDQueryRow.Column1
Name=$RDQueryRow.Column2
[/RDQueryRow]
[/RDQuery]

The query results are accessible in the RDQueryRow subsection using the Column variables. This
subsection is evaluated for each row returned by the query. The example demonstrates just the
concept, in this case it would be easier to access the information using simply the Package section.

Use the sections corresponding to repository items like Package, Element or Diagram
whenever possible. Use RDQuery only in cases when you need some extra
information not covered by RepoDoc’s sections.

Generator profiles
Generator profile changes the way the repository is processed and/or contains a document post-
processing command. It solves easily problems that arise when some repository items contain
content that is problematic from the output format point of view. For example a package with name
<MyPackage> breaks formatting when your template is intended for generating a HTML document.
Clearly the characters < and > in the name need to be replaced (in other words escaped) with
correct HTML entities < and >. This can be done automatically during document generation
by using dedicated document generator profile with defined escape sequences. The profile editor
lets you choose and edit a document generator profiles.

26

RepoDoc comes with pre-installed profiles, but you are free to create new profiles
to meet your needs. You’ll find sample profiles in the installation directory
C:\Program Files (x86)\Archimetes\RepoDoc\GeneratorProfiles. The generator
profiles have rdg file extension.

Escape sequences

Each profile may contain a list of characters and a corresponding escape sequence for each
character. During document generation RepoDoc uses this list to escape the characters in Name, Alias
and Notes variables.

Enter 0x09, 0x0a or 0x0d in character column to define escape sequences for the tab,
line feed and carriage return characters.

Post-processing

Post-processing command in the profile allows you to define a command and its arguments that
will be started upon successful document generation. This may be any command like archivation,
transformation into a different format or simply an upload of the document to your company
document store.

Use the global variables like $DG.TemplateFileName or $DG.DocumentFileName to
simplify your post-processing commands.

27

Template syntax reference

Global variables
Global variables may be used at any place in the template regardless of the section.

Table 1. Table of global variables

Variable name Variable description

$DG.DocumentDirPath Document file directory path. If the full
document path is C:\MyDir\MyDocument.html then
the variable evaluates to C:\MyDir).

$DG.DocumentFileName Document file name. If the full document path is
C:\MyDir\MyDocument.html then the variable
evaluates to MyDocument.html).

$DG.DocumentFileNameWE Document file name without extension. If the
full document path is C:\MyDir\MyDocument.html
then the variable evaluates to MyDocument).

$DG.DocumentFilePath Document file path e.g.
C:\MyDir\MyDocument.html.

$DG.PackageDepth Depth of the currently evaluated package
related to the root package. The root package
has always depth equal to 0, its child package
has depth equal to 1 and so on.

$DG.PackageGUIDPath Backslash delimited list of package GUIDs
starting with the root package and ending with
the currently evaluated package.

$DG.PackagePath Backslash delimited list of package names
starting with the root package and ending with
the currently evaluated package.

$DG.RootPackageGUID GUID of the root package.

$DG.RootPackageName Name of the root package.

$DG.TemplateDirPath Template file directory path. If the full template
path is C:\MyDir\MyTemplate.html.rdt then the
variable evaluates to C:\MyDir).

$DG.TemplateFileName Template file name. If the full template path is
C:\MyDir\MyTemplate.html.rdt then the variable
evaluates to MyTemplate.html.rdt).

$DG.TemplateFileNameWE Template file name without extension. If the full
template path is C:\MyDir\MyTemplate.html.rdt
then the variable evaluates to MyTemplate.html).

$DG.TemplateFilePath Template file path e.g. C:\MyDir\MyTemplate.rdt.

28

Sections
Following sections can be used in the template: Package, Element, Diagram, PresentationDiagram,
DiagramObject, Attribute, Operation, Parameter, Scenario, ScenarioStep, Constraint, Connector,
ConnectorEnd, Tag, Model, RDQuery, RDQueryRow, RDPut, RDRem.

Most of the sections are named after the corresponding classes that exist in the Enterprise Architect
class model. Notable exceptions are the RD prefixed sections, that do not have a corresponding class.
Variables represent the properties of repository items that can be documented and are marked
with the $ (dollar) sign. Almost all variables correspond to the properties defined in the Enterprise
Architect class model. For these, the descriptions are taken from the official documentation for
Enterprise Architect and are provided here for convenience.

Section relationships follow mostly the Enterprise Architect class model i.e. the Package section may
contain an Element or a Diagram section and so on. All possible parent-child relationships are
pictured below whereby the dark highlighted sections may be used as top level sections.

29

http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation/automationinterface.html
http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation/automationinterface.html

Package

This section is evaluated for each package found in the repository starting with the root package
defined by the user. If the package has child packages, they are evaluated before evaluating next
package on the same level.

Table 2. Table of variables for section Package

Variable name Variable description

$Package.Alias Package alias.

$Package.CountOf Number of items in parent’s collection of items
of the same type.

30

Variable name Variable description

$Package.CreatedDate The date the package was created.

$Package.DiagramCount Number of child diagrams of the package.

$Package.ElementCount Number of child elements of the package.

$Package.ElementID ID of the package element (evaluates to empty
string if the package represents a model).

$Package.GUID Package GUID.

$Package.ID Package ID.

$Package.IndexOf Index of the item in parent’s collection of items
of the same type.

$Package.IsControlled Indicates if the package has been marked as
Controlled.

$Package.IsModel Indicates if the package is a model.

$Package.IsNamespace Indicates that the package is a Namespace root.

$Package.IsProtected Indicates if the package has been marked as
Protected.

$Package.ModifiedDate The date the package was modified.

$Package.Name The name of the package.

$Package.Notes Notes in plain text format (i.e. without
formatting).

$Package.NotesHtml Notes in HTML format.

$Package.Owner The package owner when using controlled
packages.

$Package.PackageCount Number of child packages of the package.

$Package.ParentID The ID of the parent package. Zero indicates that
the evaluated package is a model and has no
parent.

$Package.Version The version of the package.

Element

This section is evaluated for each element associated with or contained in the package. Any child
elements of an element are evaluated before evaluating next element on the same level.

Table 3. Table of variables for section Element

Variable name Variable description

$Element.Abstract Indicates if the element is Abstract (1) or
Concrete (0).

31

Variable name Variable description

$Element.ActionFlags A structure to hold flags concerned with Action
semantics.

$Element.Alias An alias for the element.

$Element.AttributeCount Number of attributes defined for the element.

$Element.Author The element author.

$Element.ClassifierID The ElementID of a Classifier associated with the
element; that is, the base type. Only valid for
instance type elements (such as Object or
Sequence).

$Element.Complexity A complexity value indicating how complex the
element is; used for metric reporting and
estimation. Valid values are: 1 for Easy, 2 for
Medium, 3 for Difficult.

$Element.ConnectorCount Number of connectors defined for the element.

$Element.ConstraintCount Number of constraints defined for the element.

$Element.CountOf Number of items in parent’s collection of items
of the same type.

$Element.CreatedDate The date the element was created.

$Element.DiagramCount Number of child diagrams of the element.

$Element.ElementCount Number of child elements of the element.

$Element.GUID Element GUID.

$Element.ID Element ID.

$Element.IndexOf Index of the item in parent’s collection of items
of the same type.

$Element.IsActive Boolean value indicating whether the element is
active or not.

$Element.IsLeaf Boolean value indicating whether the element is
in leaf node or not.

$Element.IsRoot

$Element.IsSpec Boolean value indicating whether the element is
a specification or not.

$Element.Language The code generation type; for example, Java,
C++, C#, VBNet, Visual Basic, Delphi.

$Element.ModifiedDate The date the element was modified.

$Element.Multiplicity Multiplicity value for the element.

$Element.Name The name of the element.

32

Variable name Variable description

$Element.Notes Notes in plain text format (i.e. without
formatting).

$Element.NotesHtml Notes in HTML format.

$Element.OperationCount Number of operations defined for the element.

$Element.PackageID ID of the package containing the element.

$Element.ParentID ID of the element this element is child of. If it’s
nonzero then this element is a child element
(sub element or an embedded element like port
or interface).

$Element.Persistence The persistence associated with this element;
can be Persistent or Transient.

$Element.Phase The phase the element is scheduled to be
constructed in; any string value.

$Element.PresentationDiagramCount Number of presentation diagrams (diagrams
displaying the element) of the element.

$Element.RunState The element’s runstate list as a string.

$Element.ScenarioCount Number of scenarios defined for the element.

$Element.Status The status of the element, such as Proposed or
Approved.

$Element.Stereotype The primary stereotype of the element.

$Element.TagCount Number of tags defined for the element.

$Element.Type The element type (such as Class, Component).

$Element.Version The version of the element.

$Element.Visibility The Scope of the element within the current
Package. Valid values are: Public, Private,
Protected or Package.

Diagram

Depending on the parent section, this section is evaluated for each diagram contained in the
evaluated package or element.

Table 4. Table of variables for section Diagram

Variable name Variable description

$Diagram.CountOf Number of items in parent’s collection of items
of the same type.

$Diagram.DiagramObjectCount Number of diagram objects displayed on the
diagram.

33

Variable name Variable description

$Diagram.GUID Diagram GUID.

$Diagram.ID Diagram ID.

$Diagram.ImagePng A base64 encoded diagram image in PNG format.

$Diagram.IndexOf Index of the item in parent’s collection of items
of the same type.

$Diagram.Name The name of the diagram.

$Diagram.Notes Notes in plain text format (i.e. without
formatting).

$Diagram.NotesHtml Notes in HTML format.

$Diagram.PackageID The ID of the Package that the diagram belongs
to.

$Diagram.ParentID ID of the element the diagram is child of.
Contains 0 if the diagram is child of the package.

$Diagram.Type The diagram type for example Activity or
Logical.

PresentationDiagram

This section is evaluated for each diagram that displays the currently evaluated element. It offers
the same variables as the Diagram section.

Table 5. Table of variables for section PresentationDiagram

Variable name Variable description

$PresentationDiagram.CountOf Number of items in parent’s collection of items
of the same type.

$PresentationDiagram.DiagramObjectCount Number of diagram objects displayed on the
diagram.

$PresentationDiagram.GUID Diagram GUID.

$PresentationDiagram.ID Diagram ID.

$PresentationDiagram.ImagePng A base64 encoded diagram image in PNG format.

$PresentationDiagram.IndexOf Index of the item in parent’s collection of items
of the same type.

$PresentationDiagram.Name The name of the diagram.

$PresentationDiagram.Notes Notes in plain text format (i.e. without
formatting).

$PresentationDiagram.NotesHtml Notes in HTML format.

34

Variable name Variable description

$PresentationDiagram.PackageID The ID of the Package that the diagram belongs
to.

$PresentationDiagram.ParentID ID of the element the diagram is child of.
Contains 0 if the diagram is child of the package.

$PresentationDiagram.Type The diagram type for example Activity or
Logical.

DiagramObject

This section is evaluated for each diagram object displayed on the currently evaluated diagram. It
offers the same variables as the Element section plus the coordinates related variables.

Table 6. Table of variables for section DiagramObject

Variable name Variable description

$DiagramObject.Abstract Indicates if the element is Abstract (1) or
Concrete (0).

$DiagramObject.ActionFlags A structure to hold flags concerned with Action
semantics.

$DiagramObject.Alias An alias for the element.

$DiagramObject.AttributeCount Number of attributes defined for the element.

$DiagramObject.Author The element author.

$DiagramObject.Bottom The bottom edge position of the diagram object
in the image.

$DiagramObject.ClassifierID The ElementID of a Classifier associated with the
element; that is, the base type. Only valid for
instance type elements (such as Object or
Sequence).

$DiagramObject.Complexity A complexity value indicating how complex the
element is; used for metric reporting and
estimation. Valid values are: 1 for Easy, 2 for
Medium, 3 for Difficult.

$DiagramObject.ConnectorCount Number of connectors defined for the element.

$DiagramObject.ConstraintCount Number of constraints defined for the element.

$DiagramObject.CountOf Number of items in parent’s collection of items
of the same type.

$DiagramObject.CreatedDate The date the element was created.

$DiagramObject.DiagramCount Number of child diagrams of the element.

$DiagramObject.DiagramID The ID of the associated diagram where the
element is displayed.

35

Variable name Variable description

$DiagramObject.ElementCount Number of child elements of the element.

$DiagramObject.GUID Element GUID.

$DiagramObject.ID Element ID.

$DiagramObject.IndexOf Index of the item in parent’s collection of items
of the same type.

$DiagramObject.IsActive Boolean value indicating whether the element is
active or not.

$DiagramObject.IsLeaf Boolean value indicating whether the element is
in leaf node or not.

$DiagramObject.IsRoot

$DiagramObject.IsSpec Boolean value indicating whether the element is
a specification or not.

$DiagramObject.Language The code generation type; for example, Java,
C++, C#, VBNet, Visual Basic, Delphi.

$DiagramObject.Left The left edge position of the diagram object in
the image.

$DiagramObject.ModifiedDate The date the element was modified.

$DiagramObject.Multiplicity Multiplicity value for the element.

$DiagramObject.Name The name of the element.

$DiagramObject.Notes Notes in plain text format (i.e. without
formatting).

$DiagramObject.NotesHtml Notes in HTML format.

$DiagramObject.OperationCount Number of operations defined for the element.

$DiagramObject.PackageID ID of the package containing the element.

$DiagramObject.ParentID ID of the element this element is child of. If it’s
nonzero then this element is a child element
(sub element or an embedded element like port
or interface).

$DiagramObject.Persistence The persistence associated with this element;
can be Persistent or Transient.

$DiagramObject.Phase The phase the element is scheduled to be
constructed in; any string value.

$DiagramObject.PresentationDiagramCount Number of presentation diagrams (diagrams
displaying the element) of the element.

$DiagramObject.Right The right edge position of the diagram object in
the image.

$DiagramObject.RunState The element’s runstate list as a string.

36

Variable name Variable description

$DiagramObject.ScenarioCount Number of scenarios defined for the element.

$DiagramObject.Status The status of the element, such as Proposed or
Approved.

$DiagramObject.Stereotype The primary stereotype of the element.

$DiagramObject.TagCount Number of tags defined for the element.

$DiagramObject.Top The top edge position of the diagram object in
the image.

$DiagramObject.Type The element type (such as Class, Component).

$DiagramObject.Version The version of the element.

$DiagramObject.Visibility The Scope of the element within the current
Package. Valid values are: Public, Private,
Protected or Package.

Attribute

Depending on the parent section, this section is evaluated for each element, diagram object or
connector end attribute.

Table 7. Table of variables for section Attribute

Variable name Variable description

$Attribute.AllowDuplicates Indicates if duplicates are allowed in the
collection. If the attribute represents a database
column this, when set, represents the Not Null
option.

$Attribute.ConstraintCount Number of constraints defined for the attribute.

$Attribute.Container The container type.

$Attribute.Containment The type of containment - Not Specified, By
Reference or By Value.

$Attribute.CountOf Number of items in parent’s collection of items
of the same type.

$Attribute.Default The initial value assigned to this attribute.

$Attribute.GUID Attribute GUID.

$Attribute.ID Attribute ID.

$Attribute.IndexOf Index of the item in parent’s collection of items
of the same type.

$Attribute.IsCollection Indicates if the current feature is a collection or
not. If the attribute represents a database
column this, when set, represents a Foreign Key.

37

Variable name Variable description

$Attribute.IsConst A flag indicating if the attribute is Const or not.

$Attribute.IsDerived Indicates if the attribute is derived (that is, a
calculated value).

$Attribute.IsOrdered Indicates if a collection is ordered or not. If the
attribute represents a database column this,
when set, represents a Primary Key.

$Attribute.IsStatic Indicates if the attribute is a static feature or not.
If the attribute represents a database column
this, when set, represents the Unique option.

$Attribute.Length The attribute length, where applicable.

$Attribute.LowerBound A value for the collection lower boundary.

$Attribute.Name The name of the attribute.

$Attribute.Notes Notes in plain text format (i.e. without
formatting).

$Attribute.NotesHtml Notes in HTML format.

$Attribute.ParentID Returns the ElementID of the element that this
attribute is a part of.

$Attribute.Precision The precision value.

$Attribute.Scale The scale value.

$Attribute.Stereotype The stereotype for the attribute.

$Attribute.TagCount Number of tags defined for the attribute.

$Attribute.Type The attribute type (by name; also see
ClassifierID).

$Attribute.UpperBound A value for the collection upper boundary.

$Attribute.Visibility Identifies the scope of the attribute - Private,
Protected, Public or Package.

Operation

Depending on the parent section, this section is evaluated for each element, diagram object or
connector end operation.

Table 8. Table of variables for section Operation

Variable name Variable description

$Operation.Abstract A flag indicating if the operation is abstract (1)
or not (0).

$Operation.Behavior Some further explanatory behavior notes (for
example, pseudocode).

38

Variable name Variable description

$Operation.ClassifierID The Classifier ID that applies to the ReturnType.

$Operation.Code An optional field to hold the operation code
(used for the Initial Code field).

$Operation.Concurrency Indicates the concurrency type of the method.

$Operation.ConstraintCount Number of constraints defined for the operation.

$Operation.CountOf Number of items in parent’s collection of items
of the same type.

$Operation.GUID Operation GUID.

$Operation.ID Operation ID.

$Operation.IndexOf Index of the item in parent’s collection of items
of the same type.

$Operation.IsConst A flag indicating that the operation is Const.

$Operation.IsLeaf A flag to indicate if the operation is Leaf (cannot
be overridden).

$Operation.IsPure A flag indicating that the operation is defined as
Pure in C++.

$Operation.IsQuery A flag to indicate if the operation is a query (that
is, does not alter Class variables).

$Operation.IsRoot A flag to indicate if the operation is Root.

$Operation.IsStatic A flag to indicate a static operation.

$Operation.IsSynchronized A flag indicating a Synchronized operation call.

$Operation.Name The name of the operation.

$Operation.Notes Notes in plain text format (i.e. without
formatting).

$Operation.NotesHtml Notes in HTML format.

$Operation.ParameterCount Number of parameters defined for the
operation.

$Operation.ParentID Returns the ElementID of the element that the
operation belongs to.

$Operation.ReturnIsArray A flag to indicate that the return value is an
array.

$Operation.ReturnType The return type for the operation; this can be a
primitive data type or a Class or Interface type.

$Operation.StateFlags Some flags as applied to operations in State
elements.

$Operation.Stereotype The operation stereotype.

39

Variable name Variable description

$Operation.TagCount Number of tags defined for the operation.

$Operation.Visibility The operation scope - Public, Protected, Private
or Package.

Parameter

This section is evaluated for each operation parameter.

Table 9. Table of variables for section Parameter

Variable name Variable description

$Parameter.ClassifierID A ClassifierID for the parameter, if known.

$Parameter.CountOf Number of items in parent’s collection of items
of the same type.

$Parameter.Default A default value for this parameter.

$Parameter.GUID Parameter GUID.

$Parameter.IndexOf Index of the item in parent’s collection of items
of the same type.

$Parameter.IsConst A flag indicating that the parameter is Const
(cannot be altered).

$Parameter.Kind The parameter kind - in, inout, out, or return.

$Parameter.Name The name of the parameter.

$Parameter.Notes Notes in plain text format (i.e. without
formatting).

$Parameter.NotesHtml Notes in HTML format.

$Parameter.OperationID Operation ID of the operation that this
parameter belongs to.

$Parameter.Type The parameter type; can be a primitive type or a
defined classifier.

Scenario

Depending on the parent section, this section is evaluated for each element, diagram object or
connector end scenario.

Table 10. Table of variables for section Scenario

40

Variable name Variable description

$Scenario.BasicPathBranchLevel Branch level in the basic path scenario if this
scenario is an alternative/exception scenario.
Returns empty string if this scenario is a basic
path scenario.

$Scenario.BasicPathMergeLevel Merge level in the basic path scenario if this
scenario is an alternative/exception scenario.
Returns the string "End" if this is an exception
scenario or an alternative that does not join its
basic path. Returns empty string if this scenario
is a basic path scenario.

$Scenario.BasicPathName Name of the basic path scenario if this scenario
is an alternative/exception scenario. Returns the
name of itself if this is scenario is a basic path
scenario.

$Scenario.CountOf Number of items in parent’s collection of items
of the same type.

$Scenario.GUID Scenario GUID.

$Scenario.IndexOf Index of the item in parent’s collection of items
of the same type.

$Scenario.Name Scenario name.

$Scenario.Notes Notes in plain text format (i.e. without
formatting).

$Scenario.NotesHtml Notes in HTML format.

$Scenario.ParentID Element ID of the element this scenario belongs
to.

$Scenario.StepCount Number of steps defined for the scenario.

$Scenario.Type The scenario type (for example, Basic Path).

ScenarioStep

This section is evaluated for each scenario step defined in the evaluated scenario.

Table 11. Table of variables for section ScenarioStep

Variable name Variable description

$ScenarioStep.Action Identifies the action specified for the step.

$ScenarioStep.CountOf Number of items in parent’s collection of items
of the same type.

$ScenarioStep.GUID Scenario step GUID.

$ScenarioStep.IndexOf Index of the item in parent’s collection of items
of the same type.

41

Variable name Variable description

$ScenarioStep.Level The number of the step as shown in the scenario
editor.

$ScenarioStep.Results Any results that are given from the step.

$ScenarioStep.ScenarioGUID GUID of the scenario that the step is a part of.

$ScenarioStep.State A description of the state the system enters
when the step is executed.

$ScenarioStep.Type Identifies whether the step is being performed
by a user or the system.

$ScenarioStep.Uses The input and requirements that are relevant to
the step.

Constraint

This section is evaluated for each constraint defined in the evaluated repository item.

Table 12. Table of variables for section Constraint

Variable name Variable description

$Constraint.AdditionalInfo Contains Status in case of Element constraint
and Type in case of Operation constraint. Is
empty for Attribute constraints.

$Constraint.CountOf Number of items in parent’s collection of items
of the same type.

$Constraint.IndexOf Index of the item in parent’s collection of items
of the same type.

$Constraint.Name The constraint name.

$Constraint.Notes Notes in plain text format (i.e. without
formatting).

$Constraint.NotesHtml Notes in HTML format.

$Constraint.ParentID ID of the parent this constraint belongs to.

$Constraint.Type Constraint type.

Connector

Depending on the parent section, this section is evaluated for each element or diagram object
connector. The section contains also variables for the source and destination connector ends.

Table 13. Table of variables for section Connector

42

Variable name Variable description

$Connector.ConstraintCount Number of constraints defined for the
connector.

$Connector.CountOf Number of items in parent’s collection of items
of the same type.

$Connector.DestID The ElementID of the element at the target end
of this connector.

$Connector.Direction The connector direction, which can be set to one
of the following: Unspecified, Bi-Directional,
Source → Destination, Destination → Source.

$Connector.GUID Connector GUID.

$Connector.ID Connector ID.

$Connector.IndexOf Index of the item in parent’s collection of items
of the same type.

$Connector.IsLeaf A flag indicating that the connector is a leaf.

$Connector.IsRoot A flag indicating that the connector is a root.

$Connector.IsSpecification A flag indicating that the connector is a
specification.

$Connector.Name The name of the connector.

$Connector.Notes Notes in plain text format (i.e. without
formatting).

$Connector.NotesHtml Notes in HTML format.

$Connector.SourceID The ElementID of the element at the source end
of this connector.

$Connector.Stereotype The stereotype for the connector.

$Connector.TagCount Number of tags defined for the connector.

$Connector.Type The connector type; valid types are held in the
t_connectortypes table.

ConnectorEnd

This section is evaluated for each connector end belonging to the currently evaluated connector. It
offers the same variables as the Element section plus the connector end related variables.

Table 14. Table of variables for section ConnectorEnd

Variable name Variable description

$ConnectorEnd.Abstract Indicates if the element is Abstract (1) or
Concrete (0).

43

Variable name Variable description

$ConnectorEnd.ActionFlags A structure to hold flags concerned with Action
semantics.

$ConnectorEnd.Aggregation The type of Aggregation as it applies to the
connector end; valid values are: 0 = None, 1 =
Shared, 2 = Composite.

$ConnectorEnd.Alias An alias for the element.

$ConnectorEnd.AllowDuplicates For multiplicities greater than 1, indicates that
duplicate entries are possible.

$ConnectorEnd.AttributeCount Number of attributes defined for the element.

$ConnectorEnd.Author The element author.

$ConnectorEnd.Cardinality The cardinality associated with the particular
connector end.

$ConnectorEnd.ClassifierID The ElementID of a Classifier associated with the
element; that is, the base type. Only valid for
instance type elements (such as Object or
Sequence).

$ConnectorEnd.Complexity A complexity value indicating how complex the
element is; used for metric reporting and
estimation. Valid values are: 1 for Easy, 2 for
Medium, 3 for Difficult.

$ConnectorEnd.ConnectorCount Number of connectors defined for the element.

$ConnectorEnd.Constraint A constraint that can be applied to the particular
connector end.

$ConnectorEnd.ConstraintCount Number of constraints defined for the element.

$ConnectorEnd.Containment The containment type applied to the particular
connector end.

$ConnectorEnd.CountOf Number of items in parent’s collection of items
of the same type.

$ConnectorEnd.CreatedDate The date the element was created.

$ConnectorEnd.Derived Indicates that the value of the particular
connector end is derived.

$ConnectorEnd.DerivedUnion Indicates the value of the role derived from the
union of all roles that subset this.

$ConnectorEnd.DiagramCount Number of child diagrams of the element.

$ConnectorEnd.ElementCount Number of child elements of the element.

$ConnectorEnd.EndStereotype Gets the stereotype for the particular connector
end.

44

Variable name Variable description

$ConnectorEnd.EndVisibility The Scope associated with the particular
connector end - Public, Private, Protected or
Package.

$ConnectorEnd.GUID Element GUID.

$ConnectorEnd.ID Element ID.

$ConnectorEnd.IndexOf Index of the item in parent’s collection of items
of the same type.

$ConnectorEnd.IsActive Boolean value indicating whether the element is
active or not.

$ConnectorEnd.IsChangeable Flag indicating whether the particular end is
changeable or not - frozen, addOnly or none.

$ConnectorEnd.IsLeaf Boolean value indicating whether the element is
in leaf node or not.

$ConnectorEnd.IsNavigable A flag indicating that the particular connector
end is navigable from the other end.

$ConnectorEnd.IsRoot

$ConnectorEnd.IsSpec Boolean value indicating whether the element is
a specification or not.

$ConnectorEnd.Language The code generation type; for example, Java,
C++, C#, VBNet, Visual Basic, Delphi.

$ConnectorEnd.ModifiedDate The date the element was modified.

$ConnectorEnd.Multiplicity Multiplicity value for the element.

$ConnectorEnd.Name The name of the element.

$ConnectorEnd.Navigability Indicates whether the role of an association is
navigable from the opposite classifier -
Navigable, Non-Navigable or Unspecified.

$ConnectorEnd.Notes Notes in plain text format (i.e. without
formatting).

$ConnectorEnd.NotesHtml Notes in HTML format.

$ConnectorEnd.OperationCount Number of operations defined for the element.

$ConnectorEnd.Ordering Ordering for the particular connector end.

$ConnectorEnd.Owned Indicates that the Association end corresponds
to an attribute on the opposite end of the
Association.

$ConnectorEnd.PackageID ID of the package containing the element.

45

Variable name Variable description

$ConnectorEnd.ParentID ID of the element this element is child of. If it’s
nonzero then this element is a child element
(sub element or an embedded element like port
or interface).

$ConnectorEnd.Persistence The persistence associated with this element;
can be Persistent or Transient.

$ConnectorEnd.Phase The phase the element is scheduled to be
constructed in; any string value.

$ConnectorEnd.PresentationDiagramCount Number of presentation diagrams (diagrams
displaying the element) of the element.

$ConnectorEnd.Qualifier A qualifier that can apply to the particular
connector end.

$ConnectorEnd.Role The particular connector end role.

$ConnectorEnd.RoleNote Notes associated with the role of the particular
connector end.

$ConnectorEnd.RoleType The role type applied to the particular end of the
connector.

$ConnectorEnd.RunState The element’s runstate list as a string.

$ConnectorEnd.ScenarioCount Number of scenarios defined for the element.

$ConnectorEnd.Status The status of the element, such as Proposed or
Approved.

$ConnectorEnd.Stereotype The primary stereotype of the element.

$ConnectorEnd.TagCount Number of tags defined for the element.

$ConnectorEnd.Type The element type (such as Class, Component).

$ConnectorEnd.Version The version of the element.

$ConnectorEnd.Visibility The Scope of the element within the current
Package. Valid values are: Public, Private,
Protected or Package.

Tag

This section is evaluated for each element, diagram object, attribute, operation, connector or
connector end tag. Note that for diagram objects and connector ends, the tagged values of the
underlying element are evaluated.

Table 15. Table of variables for section Tag

Variable name Variable description

$Tag.CountOf Number of items in parent’s collection of items
of the same type.

46

Variable name Variable description

$Tag.GUID Tag GUID.

$Tag.IndexOf Index of the item in parent’s collection of items
of the same type.

$Tag.Name The name of the tag.

$Tag.Notes Notes in plain text format (i.e. without
formatting).

$Tag.NotesHtml Notes in HTML format.

$Tag.ParentID ID of the parent this tag belongs to.

$Tag.Value The value assigned to this tag.

Model

This section causes the iteration in the Package section to start at the model level. Using this section,
the user can jump out of the scope of the root package and start gathering information from the
model in which the root package exists.

RDQuery

This section represents a custom query from the user. Use this section to query any data from the
repository using an SQL command.

Table 16. Table of variables for section RDQuery

Variable name Variable description

$RDQuery.ColumnCount Number of columns in the returned data.

$RDQuery.RowCount Number of rows returned by the query.

$RDQuery.Statement SQL SELECT statement.

RDQueryRow

This section is evaluated for each row in the returned custom query.

Table 17. Table of variables for section RDQueryRow

Variable name Variable description

$RDQueryRow.Column1 Value of the 1st column in the returned row.

$RDQueryRow.Column10 Value of the 10th column in the returned row.

$RDQueryRow.Column11 Value of the 11th column in the returned row.

$RDQueryRow.Column12 Value of the 12th column in the returned row.

$RDQueryRow.Column13 Value of the 13th column in the returned row.

47

Variable name Variable description

$RDQueryRow.Column14 Value of the 14th column in the returned row.

$RDQueryRow.Column15 Value of the 15th column in the returned row.

$RDQueryRow.Column16 Value of the 16th column in the returned row.

$RDQueryRow.Column17 Value of the 17th column in the returned row.

$RDQueryRow.Column18 Value of the 18th column in the returned row.

$RDQueryRow.Column19 Value of the 19th column in the returned row.

$RDQueryRow.Column2 Value of the 2nd column in the returned row.

$RDQueryRow.Column20 Value of the 20th column in the returned row.

$RDQueryRow.Column3 Value of the 3rd column in the returned row.

$RDQueryRow.Column4 Value of the 4th column in the returned row.

$RDQueryRow.Column5 Value of the 5th column in the returned row.

$RDQueryRow.Column6 Value of the 6th column in the returned row.

$RDQueryRow.Column7 Value of the 7th column in the returned row.

$RDQueryRow.Column8 Value of the 8th column in the returned row.

$RDQueryRow.Column9 Value of the 9th column in the returned row.

RDPut

This section has no corresponding class and it’s content is evaluated as is. Use this section with
some filter attributes within another section to achieve a finer control over the output.

RDRem

This section serves as remark and its content is not evaluated.

48

	RepoDoc User Guide
	Table of Contents
	About
	Installing and running
	Add-in mode
	Standalone mode

	Generating documents
	Editing templates
	Package browser
	License key

	Creating templates
	Sections
	Packages
	Elements
	Elements containing elements (child elements)
	Diagrams
	Other repository items

	Variables
	Text

	Advanced topics
	Notes format
	Filter attributes
	Using reserved characters
	Convenience variables
	Multiple repository iterations
	Custom queries
	Generator profiles
	Escape sequences
	Post-processing

	Template syntax reference
	Global variables
	Sections
	Package
	Element
	Diagram
	PresentationDiagram
	DiagramObject
	Attribute
	Operation
	Parameter
	Scenario
	ScenarioStep
	Constraint
	Connector
	ConnectorEnd
	Tag
	Model
	RDQuery
	RDQueryRow
	RDPut
	RDRem

