RepoDoc User Guide

www.archimetes.com

Version 2.0.7136.2210, 2017-10-25

Table of Contents

AU . oo e 1
Installing and TUNIUNG.o vt et e 2
Add-ININOAE . oot e 2
Standalone MOGe ottt 2
Working with application. o e 4
DOCUMENT GEMETATOL . . .ttt ettt ettt ettt it ettt i 4
Package DrOWSeT e 6
APPLCAtION SETHINES .« o v vttt e 6
ADBOUt dIalog .. oot 7
LICEIISE ROy oottt e 8
Understanding templatest 9
L0 0] =T 57 9
TS o e e 9
B OS oo e 9
Template examples 11
[terating PaCKAZESot e 13
Iterating elemMents 14
Obtaining diagram IMAZESttt 16
RedireCting OULPUL.o vt ettt et 16
NOteS fOTIMAL e 17
Generator Profiles i e 17
ESCAPE SEQUEIICES . .ottt t ettt ettt ettt e i e i e 18
POSE-PIOCESSINE. . o oottt 18
L0030 10 10 1<) (< 19
Miscellaneous objects and filters.t e 19
RE O EIICE . . o e 21
PaCKa . . o o 21
ElemMent. . oo 22
D=4 - 4 24
DIagramODJeCt ot e 25
ATTIDULE . .« oo e 27
CONSITAINT . .ottt ettt e e 28
T 28

L0 0 <3 - 18 (o) 4 U 29
Parameter ... e 30
SCBIMATIO . . oottt e 30
=) g B o (0] () 31

(160) 4 1'q 1< o1 €) 32

ConnectorEnd

About

RepoDoc is a powerful document generator for Enterprise Architect able to produce a variety of
document formats using templates written in any text editor. These include HTML, LaTeX,
Markdown or AsciiDoc documents, but also CSV, XML or JSON files, GraphViz graphs, SVG diagrams
and even source codes in different languages. With RepoDoc you can also generate PDF documents
easily using the built in post-processing feature.

Installing and running

Download RepoDoc installer and follow the installation steps on the screen. Please note that
RepoDoc has following requirements for running:

» Microsoft Windows 7 or later, (32/64 bit),
e Microsoft NET Framework 4.5 or later,

* Enterprise Architect v1305 or later installed,

RepoDoc works with following repository types:

* MySQL
* PostgreSQL

MS SQL Server

@

Firebird (database repository or local *feap filed base repositories)

e QOracle

JET (local *.eap file based repositories)

For initial setup and configuration of connection to your repository, please follow
the Sparx Systems Help.

Once you have finished the installation you can use RepoDoc either as an Enterprise Architect add-
in or as a standalone application.

Add-in mode

Start the add-in from the ribbon by navigating to the Extensions — RepoDoc — Control panel option
or

using the project browser by right-clicking on a package in the package browser and selecting
Extensions — RepoDoc — Control panel option.

o The Add-in mode is not supported for EALite edition of Enterprise Architect.

Standalone mode

Standalone application can be started from the command line. When you have your Enterprise
Architect installed and configured, you can run RepoDoc from Windows command line with the
following command:

C:\Program Files (x86)\Archimetes\RepoDoc\RepoDoc.exe [ConnectionString]

Start the application with the connection string (or the full path to your .eap or .feap file) to connect

http://www.archimetes.com/repodocdownloads.html

to your repository.

Working with application

This section describes the main application parts with emphasis on the document generator. The
generator profiles are discussed in the Template examples section.

Document generator

RepoDoc follows the same principles as the default document generator included in the Enterprise
Architect and as such needs two kinds of inputs to generate a document:

1. Starting point in the repository determining the part of your model you wish to document i.e. a
root package.

2. Document template that tells RepoDoc what to take out from the repository and where to put it
into the document.

RepoDoc comes with several pre-installed templates. These templates are stored in

Q the C:\Program Files (x86)\Archimetes\RepoDoc\DocumentTemplates\Input directory
or you can download the templates from our website. The document templates
have liquid file extension.

To demonstrate the document generation we’ll use the standard EAExample.eap model that is
shipped with every Enterprise Architect and is typically stored in the c:\Program Files (x86)\Sparx
Systems\EA directory. To generate a document, based on this model, please follow these steps:

1. Open the EAExample.eap model in Enterprise Architect and select the UML Modeling package in the
Project browser.

2. Right-click on the selected package and choose Extensions — RepoDoc — Control Panel. RepoDoc
starts and presents itself with the Document generator form.

3. Select the About dialog and click the Download license key button if your are using RepoDoc for
the first time. Then switch back to the Document generator.

4. Click the ‘- button in the first row and select the UML-model-documentation.html.liquid template
from the dialog.

5. Click the Generate document button. RepoDoc generates a HTML documentation for the UML
Modeling package and outputs information similar to the one pictured below.

http://www.archimetes.com/repodocdownloads.html

=P RepoDoc [EAExample.eap]

y

Document
generator

Profile editor

0

Package
browser

&

Application
settings

©

About

Template: B C:\Program Files (x86)\Archimetes\RepoDoc\DocumentT emplates)input\UML-model-documentation.html.rdt E
[Edit template Verify template]
Document: C\Users\TestUser\Documents\UML-model-documentation.html E]
Generator profile: <Nonas
Root package: UML Modeling {FF6B5698-A31B-497FAG61-19A033087847}
View Generate
document document

Generating document ..
DOME, 16582432 biytes written to disk.
Generation took 01:19.

4 [

The generated document is stored in the Documents directory (the path may differ based on your
username) and should look like the one pictured below.

4 [[] UML Modeling
W UML Structural Diagrams

~] UMLBehavioral Diagrams
g i b

Welcome to The RepoDoc® Bootstrap Template.

Dear visitors, The Archimetes Group is proud to introduce you the capabilities of their RepoDoc Sparx Enterprise Architect add-in. This
HTML document was generated by the RepoDoc® tool from the standard EAExample.eap model that is part of the Sparx Enterprise Architect
installation. Our RepoDoc Template applies the Twitter Bootstrap framewaork fo the model data from EAExample repository.

The navigation tree control on the left navigation pannel shows the tree of Packages and Diagrams inside the model. Just browse the tree and
navigate directly to any Diagram, interesting to you, or simply click on the Package to see the Notes containing description of the package. The
alphabetical list of Element types is located on the right Panel. The types buttons represent the accordion scrolable lists of elements. Each
element shows the Notes in a modal dialog window, after clicking on the link. For use cases the small controls for Scenario Description and
Scenario Steps are also visible

Actions
ActionPins
Actors
Collaborations

Collaboration
Occurrences

Classes

Components

Decisions

Package Name: UML Modeling

Package ID:11
Nr. of Diagrams: 3

(Package diagram) Modeling Languages O

Meodeling Languages

Enterprise Architect is a UML-based modeling tool. However, it strongly
supports modeling with extensions to UML and with other existing
madeling languages, and enables you ta create your own modeling tools

as MDG Technelogies.

UL Mogeiing - UML 20 Disgrams

UAIL Modeiing - Custom Disgrams

UML structural Diagrams

Additional functionality of the document generator includes:

Enumerations
Events

Interruptible Activity
Region Fragments

Interaction Fragments
Interaction Occurrence
Nodes

Objects

» Verify template button starts template verification without generating a document. In this case

the connection to the repository is not necessary.

* Edit template button opens the selected template in a text editor defined by the user. You can
change the path to your favorite editor in the Application settings.

* Generator profile button >> navigates to the generator profile editor which allows you to modify
the way the repository is processed or to set a document post-processing command.

* Package browser button >> navigates to the Package browser which allows you to choose a
different package to document without closing the RepoDoc. The name of the root package is
displayed in the textbox together with the package GUID.

» View document button opens the generated document in the associated application.

Package browser

The package browser lets you choose a root package from the model. Please note that the browser
is visible only when you invoked RepoDoc with an opened project in the Enterprise Architect or
with a ConnectionString argument (in case you are using it in standalone mode).

D RepoDoc [EAExample.eap] E= Eo ™™
[=-Project Models
* -- Getting Started
[+-Modeling Basics
Document [=-UML Modeling
generator [Z-UML Structural Diagrams

Composite Structure
Object
Abstract Class Model

[=-UML Behavioral Diagrams

Profile editor i) Interactions
D +-Domain Specific Modeling
+-Navigate, Search & Trace

3

3
Package [+-Projects and Teams
[+ Testing

3

&

+-Maintenance

+-Reporting
Q - Automation
+-Database Engineering
Application +- Systems Engineering

+-Analysis and Business Modeling
+-Software Engineering
- Model Transformation

[H-Model Simulation

[

([
settings [-Execution Analysis

=

[

About

Select a package you wish to start with, right click on it and choose Set as new root package.

Application settings
This form contains application settings and allows you to set:
» Folder where you prefer to store your templates. This folder will be then preset when selecting

template in the Document generator form.

» Folder where you prefer to store your generator profiles. This folder will be then preset when
selecting generator profile in the Profile editor form.

 Path to the text editor that will be used to open templates when clicking Edit template button in
the Document generator form.

=P RepoDoc [EAExample.eap]
Templates directory:

C:\Program Files (x86)\Archimetes\RepoDoc\DocumentTemplatesiinput

y

Profiles directory: C:\Program Files (x86)\Archimetes\RepoDoc\GeneratorProfiles

Document External editor:
generator ’ notepad.exe

|
i’

“

Profile editor

0

Package
browser

Application

© |t
e

About

‘ Default H Save ‘

About dialog

The About dialog shows product and license key information.

About RepoDoc @

RepoDoc

v1.1.18209.0 h
Copyright © Archimetes 2016

RepoDoc

License key information

Customer 1D none
Computer D 5132659e55440f0b3a51891e6fe5148814f175025cc 7a40cfB518be422433968
License key: License key is valid until 2017/03/28.

Oftne [Creterequest] [Brovse

Product description

RepoDoc is a document generator for Spamx Systems Enterprise Architect able to produce a variety of document formats using plaintext »
templates.

RepoDoc makes use of following open source & 3rd-party components:
- Log#net, a logging tool licensed under the Apache License, Version 2.0.
- Material-design-icons, a set oficons licensed under the Apache License, Version 2.0

License key

RepoDoc needs a valid license key for document generation. Time limited license key is available
for free and can be simply obtained by clicking the Download license key button. Please contact
info@archimetes.com for further information.

mailto:info@archimetes.com

Understanding templates

Every RepoDoc template is a plain text file with following instructions:

1. which repository items to look for (packages, elements, diagrams etc.)
2. what information about these items (name, notes, author, stereotype) to put into the document.
RepoDoc does not use its own template syntax, but instead makes use of Liquid template language.

Liquid templates consist of objects, tags, and filters and are briefly described below. For more
information, please refer to the Liquid template language documentation.

Objects

Objects represent variables and are denoted by double curly braces: {{ and }}. Objects can be
defined by the user or are provided "as is" by RepoDoc. One of the provided objects is the
root_package object. It represents the package selected by the user in the Project browser and serves
usually as the starting point for repository iteration. We’ll use this object in the following examples.

This small template below puts the name of the root package into the document.

{{ root_package.name }}

Q The RepoDoc makes use of the Enterprise Architect class model and being familiar
with it is an advantage when writing templates.

The RepoDoc uses the so called snake case for object names. For example Notes
0 becomes notes, ParentID becomes parent_id etc. Have a look at Reference section
for a quick overview of all possible objects.

Tags

Tags create the logic and control flow for templates. They are denoted by curly braces and percent
signs: {% and %}. The template below puts the name of root package into the document, if it contains
the REQ string.

{% if root_package.name contains "REQ" %}
root_package.notes
{% endif %}

Filters

Filters change the output of a Liquid object. They are used within an output and are separated by a

https://shopify.github.io/liquid/basics/introduction/
http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation_and_scripting/reference.html
https://en.wikipedia.org/wiki/Snake_case

{{ root_package.name | upcase }}

The template above changes the name of the root package to uppercase and puts the result into the
document.

Liquid offers a rich set of standard filters to manipulate strings, numbers and

Q arrays. RepoDoc offers some additional filters for accessing and/or manipulating
repository items. These additional filters are described in the Template examples
section.

10

Template examples

This section contains template examples and focuses on main RepoDoc features. For standard
Liquid features please consult the Liquid template language documentation.

For further examples have a look at the RepoDoc pre-installed templates. These

Q templates are stored in the C:\Program Files
(x86)\Archimetes\RepoDoc\DocumentTemplates\Input directory or you can download
the templates from our website.

The examples below have been created using the EAExample.eap model that is shipped with

Enterprise Architect. The WSDL package from the Domain Specific Modeling (see picture below) is
used as the root package (root_package object).

11

https://shopify.github.io/liquid/basics/introduction/
http://www.archimetes.com/repodocdownloads.html
http://www.archimetes.com/repodocdownloads.html

A Project Models

= | Getting Started
= | Modeling Basics
5| UML Modeling

=
[>
[
[>
4 |E Domain Specific Modeling

[
[
[
[

7 Domain Based Models

b [NIEM
b [1 BPMN
b [] XML Schema
4 [= wsDL
7 WSDL
4 [F3 «WSDLnamespace» WSDLPackagel
?g Overview
A Pj—_}’ «X5Dschemas= Types
%3 Types
«=XSDcomplexTypes InputParameters
[+ «XSDcomplexType= OutputParameters
Al Pj—_}’ Messages
?E Messages
[«WSDLmessage» Samplelnput
[+ «WSDLmessage» SampleQutput
A Pj—_}’ PortTypes
?E PortTypes
[=0 «WSDLportType» SamplePortTypeHTTP
[=0 «WSDLportType=» SamplePortTypeSOAP
4 [Bindings
?E Bindings
[«WSDLbinding» SampleBindingHTTP
[+ «WSDLbinding=» SampleBindingSOAP
Al Pj—_}’ Services
?E SampleService
>0 «WSDLservice» SampleService
A4 %] «WSDL» SampleWSDLFilel
=0 SampleService; SampleService
[[:'.,_a «W5SDLnamespace» WSDLPackage?
[» [:'.,_i «WSDLnamespace» WSDLPackage3
[[;_ «=X50schema= Schema
T GML
1 ArcGIS
7 win32 Ul
[:__ Entity Relationship
("] Example UMLProfile
I> |E] Navigate, Search & Trace

EORE R ORE R

12

Iterating packages

This basic template outputs the names of root package child packages.

Iterating packages (Input)

{% for package in root_package.packages %}
{{ package.name }}
% endfor %}

Iterating packages (Output)
WSDLPackage1
WSDLPackage?2
WSDLPackage3

Schema

Notice the additional blank lines in the output. These occur because there is a line break right after
the for tag. In Liquid, you can include a hyphen in your tag {{-, -}}, {%-, and -%} to strip whitespace
from the left or right side of a tag. This is called whitespace control.

Iterating packages with whitespace control (Input)

{% for package in root_package.packages -%}
{{ package.name }}
{% endfor %}

Iterating packages with whitespace control (Output)

WSDLPackage1
WSDLPackage?2
WSDLPackage3
Schema

In the example above, only the child packages of the root package are iterated. You can use the
get_packages filter to get an array of all child packages. The filter works recursively and returns an
array of all packages under the given package.

Iterating packages using a filter (Input)

% assign packages = root_package | get_packages -%}
{% for package in packages -%}

{{ package.name }}

{% endfor %}

13

https://shopify.github.io/liquid/basics/whitespace/

Iterating packages using a filter (Output)

WSDLPackage1
Types
Messages
PortTypes
Bindings
Services
WSDLPackage?
Messages
PortTypes
Bindings
Services
WSDLPackage3
Types
Messages
PortTypes
Bindings
Services
Schema

You can specify an optional boolean parameter for the get_packages filter.
Q Example: {% assign packages = some_package | get_packages: true %}

If it’s true, then the some_package is included in the returned array for convenience.

Iterating elements

Elements can be iterated either using the package elements property or using the get_elements filter.

The template below uses the elements property that contains an array of child elements of a
package. To shorten the output we’ll stop iterating when we reach package WSDLPackage?Z.

Iterating elements (Input)

{% assign packages = root_package | get_packages -%}

{% for package in packages -%}

{% if package.name == "WSDLPackage2" -%}{% break %}{% endif -%}
Package name: {{ package.name }}

{% for element in package.elements -%}

{% if element.type != "Note" -%}

Element name: {{ element.name }}

endif -%

endfor -%}

endfor %}

o

P N e
o

o

14

Iterating elements (Output)

Package name: WSDLPackage1

Element name: SampleWSDLFile1l
Package name: Types

Element name: InputParameters

Element name: OutputParameters
Package name: Messages

Element name: Samplelnput

Element name: SampleOutput
Package name: PortTypes

Element name: SamplePortTypeHTTP

Element name: SamplePortTypeSOAP
Package name: Bindings

Element name: SampleBindingHTTP

Element name: SampleBindingSOAP
Package name: Services

Element name: SampleService

Some elements may have their own child elements representing sub components, ports or
interfaces. These can be accessed either by using again the elements property, this time for each
element or by using the get_elements filter. The filter works recursively and returns an array of
child elements for the given repository item. It can be used with both packages and elements.

Iterating elements using a filter (Input)

% assign packages = root_package | get_packages -%}
{% for package in packages -%}

{% if package.name == "WSDLPackage2" -%}{% break %}{% endif -%
Package name: {{ package.name }}

{% assign elements = package | get_elements -%}

{% for element in elements -%}

{% if element.type != "Note" -%}

Element name: {{ element.name }}

endif -%

endfor -%}

endfor %}

of of

o

{
{
{

15

Iterating elements using a filter (Output)

Package name: WSDLPackage1

Element name: SampleWSDLFile1l

Element name: SampleService
Package name: Types

Element name: InputParameters

Element name: OutputParameters
Package name: Messages

Element name: Samplelnput

Element name: SampleQutput
Package name: PortTypes

Element name: SamplePortTypeHTTP

Element name: SamplePortTypeSOAP
Package name: Bindings

Element name: SampleBindingHTTP

Element name: SampleBindingSOAP
Package name: Services

Element name: SampleService

You can see that the component SampleWSDLFilel is now followed by the SampleService interface.

You can specify an optional boolean parameter for the get_elements filter.
Example: {% assign elements = some_package | get_elements: true %}
Q If it’s true then the package element will be included in the returned array.

The so called package element can (also) be accessed by simply using the package
element property.

Example: {{ some_package.element }}

Obtaining diagram images

Diagram images are accessible via the diagram image_png property. This property returns a base64
encoded diagram image in the PNG format. The image can be taken and used "as is" (for example in
HTML code) or written to a file using output redirection filters.

HTML template fragment with diagram image.
<img id="Diagram_{{ diagram.id }}" src="data:image/png;base64,{{ diagram.image_png
/>

Redirecting output

Sometimes it is necessary to redirect output to a file or files. For this purpose, RepoDoc offers
following filters:

16

e input | write_all_text: filename filter writes the input to the specified file. The filter assumes
that the input is plain text.

* input | write_all_bytes: filename filter writes the input to the specified file. The filter assumes
that the input is binary.

0 The file is stored in the same directory as the document.

The baseb4_encode and base64_decode filters may be used in conjunction with the write_all_:-- filters
to modify the input before writing the data to a file. In the following example each image is first
base64 decoded and then written to a file whereby the name of the file contains diagram GUID to
ensure that the filename is unique.

Saving diagram images to files.

{% assign packages = root_package | get_packages: true %}

{% for package in packages %}

{% for diagram in package.diagrams %}

{% assign filename = "Diagram_" | append: diagram.quid | replace: "{", "" | replace:
“}", "" | append: ".png" %}

{{ diagram.image_png | base64_decode | write_all_bytes: filename }}

% endfor %}

{% endfor %}

Notes format

Notes for various items may contain format information, like font or color information. RepoDoc
provides two objects when dealing with notes and formatting.

* {{ some_item.notes }} returns notes in plain text (without formatting). The color or font format
information is lost, however the lists are preserved using indents and newlines.

o {{ some_item.notes_html }} returns notes in html format with all the formatting expressed
using html tags.

Generator profiles

Generator profiles can be used to specify escape sequences for certain characters and/or post-
processing command for the generated document. The profile editor lets you create and edit a
document generator profile.

17

P

> §

Document

generator

rofile editor

o [

Package
browser

&

Application

w
1]
=3
=

=1
[}

About

Generator profile: C:\Program Files (x86)\Archimetes\RepoDoc\GeneratorProfiles\HTML rdg

Escape sequences

Escape sequence

Character
4
=

<

3gt;

&

Bamp;

"

&apos:

Post-processing

Command:

Arguments:

v

RepoDoc comes with several pre-installed profiles, but you are free to create new
profiles to meet your needs. Youwll find the sample profiles in the installation
directory C:\Program Files (x86)\Archimetes\RepoDoc\GeneratorProfiles. The

generator profiles have rdg file extension.

Escape sequences

Some repository items may contain content that is problematic from the output format point of
view. For example a package with name <MyPackage> breaks formatting when the template is
intended for generating a HTML document. Clearly the characters < and > in the name need to be
replaced (in other words escaped) with correct HTML entities &1t; and >. This can be done
automatically during document generation by using a dedicated document generator profile with
defined escape sequences. Each profile may contain a list of characters and a corresponding escape
sequence for each character. To apply the escaping during document generation simply use the esc
filter.

HTML template fragment with escaped package name.

<h1>{{ package.name | esc }}</h1>

v

Enter 0x09, 0x0a or 0x0d in character column to define escape sequences for the tab,

line feed and carriage return characters.

Post-processing

Post-processing command in the profile allows you to define a command and its arguments that

18

will be started upon successful document generation. This may be any command like archivation,
transformation into a different format or simply an upload of the document to your company
document store.

Custom queries

Iterating the root_package (or models) object should provide all information necessary for your
document. However, there may be cases when information is required beyond what is covered by
RepoDoc. For such cases, RepoDoc offers the sql_query filter to perform the user’s custom SQL
query. The following example demonstrates the usage of this filter.

Getting a list of packages using a custom SQL query.

%- assign statement = "SELECT package_id, name FROM t_package" -%}
{%- assign table = statement | sql_query -%}

{%- for row in table.rows -%}

PackageID={{ row.column_values[@] }}

Name={{ row.column_values[1] }}

{% endfor %}

The query results are accessible via the table object. If offers an array of rows and column_values for
each row. There is also a column_names object available (not used in the example above). The
example demonstrates just the concept, in this case it would be easier to access the information
simply by iterating the root_package.

Iterate packages, elements and diagrams to retrieve the needed information
whenever possible. Use custom queries only in cases when you need some extra
information not covered by RepoDoc.

Miscellaneous objects and filters

RepoDoc provides several useful objects and filters not mentioned in previous sections.
Objects:

* models object contains an array of repository models. Use this object if you need to iterate the
repository regardless of the selected root package. Example: {{ models[0].name }}.

» template_path object contains the full path to the currently processed template.

» document_path object contains the full path to the document name.
Filters:

* get_file_name filter returns the file name and extension of the specified path string.

» get_file_name_without_extension filter returns the file name of the specified path string without
the extension.

* get_directory_name filter returns the directory information for the specified path string.

19

* get_parents filter returns an array of repository items starting with the top most known parent
and ending with the parent of the provided input item.

20

Reference

This section provides detailed information on all the available objects and classes covered by
RepoDoc. The Package class can be considered a top level one and its instance is available via the
root_package object or the models array.

The class names and their relationships correspond to the classes defined in the Enterprise
Architect class model. All covered parent-child relationships are pictured below (e.g. a package
object may contain one or more element objects accessible using the elements property and so on).
More over diagram objects and connector ends can be treated like elements (they inherit all
element properties).

Package Dpackages

elements

Element

resentation_diagrams

Diagram elements

corhector$ (diagrams iagram_objects

elements DiagramObject

scenarios

operations attributes presentation_diagrams /diagrams connectors

constraints Connector

tags

operationy / connectors connector_ends| attributes

ConnectorEnd constraints fags
operations \:tributes onstraipts \tags s¢enarios
[~
Operation constraints | Attribute tags Scenario
parameters constraints tags /constraints ta steps
Parameter Constraint Tag ScenarioStep

The properties for each class are listed below.

Property names and their descriptions are taken mostly from the official
G Enterprise Architect class model documentation and are provided here for
convenience.

Package

Property name Property description
alias Package alias.
created_date The date the package was created.

21

http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation/automationinterface.html
http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation/automationinterface.html
http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation/automationinterface.html
http://www.sparxsystems.com/enterprise_architect_user_guide/13.0/automation/automationinterface.html

Property name
diagrams

element

elements
guid
id

is_controlled

is_model
is_namespace

is_protected

modified_date
name

notes

notes_html

owner
packages

parent_id

version

Element

Property name

abstract
action_flags

alias

22

Property description
List of child diagrams of the package.

The associated element object (so called package
element). Use this property to get common
information such as stereotype, complexity,
author, constraints, tagged values and scenarios.
Contains null, if the package is a model.

List of child elements of the package.
Package GUID.
Package ID.

Indicates if the package has been marked as
Controlled.

Indicates if the package is a model.
Indicates that the package is a Namespace root.

Indicates if the package has been marked as
Protected.

The date the package was modified.
The name of the package.

Notes in plain text format (i.e. without
formatting).

Notes in HTML format.

The package owner when using controlled
packages.

List of child packages of the package.

The ID of the parent package. Zero indicates that
the evaluated package is a model and has no
parent.

The version of the package.

Property description

Indicates if the element is Abstract (1) or
Concrete (0).

A structure to hold flags concerned with Action
semantics.

An alias for the element.

Property name

attributes
author

classifier_id

complexity

connectors
constraints
created_date
diagrams
elements
guid

id

is_active

is_leaf

is_root

is_spec

language

modified_date
multiplicity
name

notes

notes_html
operations

package_id

Property description
List of attributes defined for the element.
The element author.

The ElementID of a Classifier associated with the
element; that is, the base type. Only valid for
instance type elements (such as Object or
Sequence).

A complexity value indicating how complex the
element is; used for metric reporting and
estimation. Valid values are: 1 for Easy, 2 for
Medium, 3 for Difficult.

List of connectors defined for the element.
List of constraints defined for the element.
The date the element was created.

List of child diagrams of the element.

List of child elements of the element.
Element GUID.

Element ID.

Boolean value indicating whether the element is
active or not.

Boolean value indicating whether the element is
in leaf node or not.

Boolean value indicating whether the element is
a specification or not.

The code generation type; for example, Java,
C++, C#, VBNet, Visual Basic, Delphi.

The date the element was modified.
Multiplicity value for the element.
The name of the element.

Notes in plain text format (i.e. without
formatting).

Notes in HTML format.
List of operations defined for the element.

ID of the package containing the element.

23

Property name Property description

parent_id ID of the element this element is child of. If it’s
nonzero then this element is a child element
(sub element or an embedded element like port
or interface).

persistence The persistence associated with this element;
can be Persistent or Transient.

phase The phase the element is scheduled to be

presentation_diagrams

run_state The element’s runstate list as a string.

scenarios List of scenarios defined for the element.

status The status of the element, such as Proposed or
Approved.

stereotype The primary stereotype of the element.

tags List of tags defined for the element.

type The element type (such as Class, Component).

version The version of the element.

visibility The Scope of the element within the current
Package. Valid values are: Public, Private,
Protected or Package.

Diagram

Property name Property description

diagram_objects List of diagram objects displayed on the
diagram.

quid Diagram GUID.

id Diagram ID.
image_png A base64 encoded diagram image in PNG format.

name The name of the diagram.

notes Notes in plain text format (i.e. without
formatting).

notes_html Notes in HTML format.

package_id The ID of the Package that the diagram belongs

24

constructed in; any string value.

List of presentation diagrams (diagrams
displaying the element).

to.

Property name

parent_id

type

DiagramObject

Property name

abstract
action_flags

alias
attributes
author

bottom

classifier_id

complexity

connectors
constraints
created_date

diagram_id

diagrams
elements
guid

id

is_active

Property description

ID of the element the diagram is child of.
Contains 0 if the diagram is child of the package.

The diagram type for example Activity or
Logical.

Property description

Indicates if the element is Abstract (1) or
Concrete (0).

A structure to hold flags concerned with Action
semantics.

An alias for the element.
List of attributes defined for the element.
The element author.

The bottom edge position of the diagram object
in the image.

The ElementID of a Classifier associated with the
element; that is, the base type. Only valid for
instance type elements (such as Object or
Sequence).

A complexity value indicating how complex the
element is; used for metric reporting and
estimation. Valid values are: 1 for Easy, 2 for
Medium, 3 for Difficult.

List of connectors defined for the element.
List of constraints defined for the element.
The date the element was created.

The ID of the associated diagram where the
element is displayed.

List of child diagrams of the element.
List of child elements of the element.
Element GUID.

Element ID.

Boolean value indicating whether the element is
active or not.

25

Property name

is_leaf

is_root

is_spec

language

left

modified date

multiplicity

name

notes

notes_html
operations
package_id

parent_id

persistence

phase

presentation_diagrams

right

run_state
scenarios

status

stereotype
tags

top

26

Property description

Boolean value indicating whether the element is
in leaf node or not.

Boolean value indicating whether the element is
a specification or not.

The code generation type; for example, Java,
C++, C#, VBNet, Visual Basic, Delphi.

The left edge position of the diagram object in
the image.

The date the element was modified.
Multiplicity value for the element.
The name of the element.

Notes in plain text format (i.e. without
formatting).

Notes in HTML format.
List of operations defined for the element.
ID of the package containing the element.

ID of the element this element is child of. If it’s
nonzero then this element is a child element
(sub element or an embedded element like port
or interface).

The persistence associated with this element;
can be Persistent or Transient.

The phase the element is scheduled to be
constructed in; any string value.

List of presentation diagrams (diagrams
displaying the element).

The right edge position of the diagram object in
the image.

The element’s runstate list as a string.
List of scenarios defined for the element.

The status of the element, such as Proposed or
Approved.

The primary stereotype of the element.
List of tags defined for the element.

The top edge position of the diagram object in
the image.

Property name
type
version

visibility

Attribute

Property name

allow_duplicates

constraints
container

containment

default
guid
id

is_collection
is_const
is_derived

is_ordered

is_static

length
lower_bound
name

notes

Property description
The element type (such as Class, Component).
The version of the element.

The Scope of the element within the current
Package. Valid values are: Public, Private,
Protected or Package.

Property description

Indicates if duplicates are allowed in the
collection. If the attribute represents a database
column this, when set, represents the Not Null
option.

List of constraints defined for the attribute.
The container type.

The type of containment - Not Specified, By
Reference or By Value.

The initial value assigned to this attribute.
Attribute GUID.
Attribute ID.

Indicates if the current feature is a collection or
not. If the attribute represents a database
column this, when set, represents a Foreign Key.

A flag indicating if the attribute is Const or not.

Indicates if the attribute is derived (that is, a
calculated value).

Indicates if a collection is ordered or not. If the
attribute represents a database column this,
when set, represents a Primary Key.

Indicates if the attribute is a static feature or not.
If the attribute represents a database column
this, when set, represents the Unique option.

The attribute length, where applicable.
A value for the collection lower boundary.
The name of the attribute.

Notes in plain text format (i.e. without
formatting).

27

Property name

notes_html

parent_id

precision
scale
stereotype
tags

type

upper_bound

visibility

Constraint

Property name

additional_info

name

notes
notes_html
parent_id
type

Tag

Property name
guid

name

notes
notes_html
parent_id

28

Property description
Notes in HTML format.

Returns the ElementID of the element that this
attribute is a part of.

The precision value.

The scale value.

The stereotype for the attribute.
List of tags defined for the attribute.

The attribute type (by name; also see
ClassifierID).

A value for the collection upper boundary.

Identifies the scope of the attribute - Private,
Protected, Public or Package.

Property description

Contains Status in case of Element constraint
and Type in case of Operation constraint. Is
empty for Attribute constraints.

The constraint name.

Notes in plain text format (i.e. without
formatting).

Notes in HTML format.
ID of the parent this constraint belongs to.

Constraint type.

Property description
Tag GUID.
The name of the tag.

Notes in plain text format (i.e. without
formatting).

Notes in HTML format.

ID of the parent this tag belongs to.

Property name

value

Operation

Property name

abstract
behavior

classifier_id

code

concurrency
constraints
quid

id

is_const

is_leaf
is_pure
is_query

is_root
is_static
is_synchronized
name

notes

notes_html
parameters

parent_id

return_is_array

Property description

The value assigned to this tag.

Property description

A flag indicating if the operation is abstract (1)
or not (0).

Some further explanatory behavior notes (for
example, pseudocode).

The Classifier ID that applies to the ReturnType.

An optional field to hold the operation code
(used for the Initial Code field).

Indicates the concurrency type of the method.
List of constraints defined for the operation.
Operation GUID.

Operation ID.

A flag indicating that the operation is Const.

A flag to indicate if the operation is Leaf (cannot
be overridden).

A flag indicating that the operation is defined as
Pure in C++.

A flag to indicate if the operation is a query (that
is, does not alter Class variables).

A flag to indicate if the operation is Root.

A flag to indicate a static operation.

A flag indicating a Synchronized operation call.
The name of the operation.

Notes in plain text format (i.e. without
formatting).

Notes in HTML format.
List of parameters defined for the operation.

Returns the ElementID of the element that the
operation belongs to.

A flag to indicate that the return value is an
array.

29

Property name

return_type

state_flags

stereotype
tags

visibility

Parameter

Property name

allow_duplicates

classifier_id
default
guid

is_const

is_ordered
kind
lower_bound
name

notes

notes_html

operation_id

type

upper_bound

Scenario

30

Property description

The return type for the operation; this can be a
primitive data type or a Class or Interface type.

Some flags as applied to operations in State
elements.

The operation stereotype.
List of tags defined for the operation.

The operation scope - Public, Protected, Private
or Package.

Property description

Indicates if duplicates are allowed in the
collection.

A ClassifierID for the parameter, if known.
A default value for this parameter.
Parameter GUID.

A flag indicating that the parameter is Const
(cannot be altered).

Indicates if a collection is ordered or not.

The parameter kind - in, inout, out, or return.
A value for the collection lower boundary.
The name of the parameter.

Notes in plain text format (i.e. without
formatting).

Notes in HTML format.

Operation ID of the operation that this
parameter belongs to.

The parameter type; can be a primitive type or a
defined classifier.

A value for the collection upper boundary.

Property name

basic_path_branch_level

basic_path_merge_level

basic_path_name

quid
name

notes

notes_html

parent_id

steps

type

ScenarioStep

Property name

action
quid

level

results
scenario_guid

state

type

Property description

Branch level in the basic path scenario if this
scenario is an alternative/exception scenario.
Returns empty string if this scenario is a basic
path scenario.

Merge level in the basic path scenario if this
scenario is an alternative/exception scenario.
Returns the string "End" if this is an exception
scenario or an alternative that does not join its
basic path. Returns empty string if this scenario
is a basic path scenario.

Name of the basic path scenario if this scenario
is an alternative/exception scenario. Returns the
name of itself if this is scenario is a basic path
scenario.

Scenario GUID.
Scenario name.

Notes in plain text format (i.e. without
formatting).

Notes in HTML format.

Element ID of the element this scenario belongs
to.

List of steps defined for the scenario.

The scenario type (for example, Basic Path).

Property description
Identifies the action specified for the step.
Scenario step GUID.

The number of the step as shown in the scenario
editor.

Any results that are given from the step.
GUID of the scenario that the step is a part of.

A description of the state the system enters
when the step is executed.

Identifies whether the step is being performed
by a user or the system.

31

Property name

uses

Connector

Property name

alias
connector_ends
constraints

dest_id

direction

guid

id
is_leaf
is_root

is_specification

name

notes

notes_html

source_id

stereotype
tags

type

ConnectorEnd

Property name

abstract

32

Property description

The input and requirements that are relevant to
the step.

Property description

Connector alias.

List of connector ends defined for the connector.
List of constraints defined for the connector.

The ElementID of the element at the target end
of this connector.

The connector direction, which can be set to one
of the following: Unspecified, Bi-Directional,
Source — Destination, Destination — Source.

Connector GUID.

Connector ID.

A flag indicating that the connector is a leaf.
A flag indicating that the connector is a root.

A flag indicating that the connector is a
specification.

The name of the connector.

Notes in plain text format (i.e. without
formatting).

Notes in HTML format.

The ElementID of the element at the source end
of this connector.

The stereotype for the connector.
List of tags defined for the connector.

The connector type; valid types are held in the
t_connectortypes table.

Property description

Indicates if the element is Abstract (1) or
Concrete (0).

Property name

action_flags

aggregation

alias

allow_duplicates

attributes
author

cardinality

classifier_id

complexity

connectors

constraint

constraints

containment

created_date

derived

derived_union

diagrams
elements

end_stereotype

end_visibility

Property description

A structure to hold flags concerned with Action
semantics.

The type of Aggregation as it applies to the
connector end; valid values are: 0 = None, 1 =
Shared, 2 = Composite.

An alias for the element.

For multiplicities greater than 1, indicates that
duplicate entries are possible.

List of attributes defined for the element.
The element author.

The cardinality associated with the particular
connector end.

The ElementID of a Classifier associated with the
element; that is, the base type. Only valid for
instance type elements (such as Object or
Sequence).

A complexity value indicating how complex the
element is; used for metric reporting and
estimation. Valid values are: 1 for Easy, 2 for
Medium, 3 for Difficult.

List of connectors defined for the element.

A constraint that can be applied to the particular
connector end.

List of constraints defined for the element.

The containment type applied to the particular
connector end.

The date the element was created.

Indicates that the value of the particular
connector end is derived.

Indicates the value of the role derived from the
union of all roles that subset this.

List of child diagrams of the element.
List of child elements of the element.

Gets the stereotype for the particular connector
end.

The Scope associated with the particular
connector end - Public, Private, Protected or
Package.

33

Property name
guid
id

is_active

is_changeable

is_leaf

is_navigable

is_root

is_spec

language

modified date
multiplicity
name

navigability

notes

notes_html
operations
ordering

owned

package_id

parent_id

persistence

34

Property description
Element GUID.
Element ID.

Boolean value indicating whether the element is
active or not.

Flag indicating whether the particular end is
changeable or not - frozen, addOnly or none.

Boolean value indicating whether the element is
in leaf node or not.

A flag indicating that the particular connector
end is navigable from the other end.

Boolean value indicating whether the element is
a specification or not.

The code generation type; for example, Java,
C++, C#, VBNet, Visual Basic, Delphi.

The date the element was modified.
Multiplicity value for the element.
The name of the element.

Indicates whether the role of an association is
navigable from the opposite classifier -
Navigable, Non-Navigable or Unspecified.

Notes in plain text format (i.e. without
formatting).

Notes in HTML format.
List of operations defined for the element.
Ordering for the particular connector end.

Indicates that the Association end corresponds
to an attribute on the opposite end of the
Association.

ID of the package containing the element.

ID of the element this element is child of. If it’s
nonzero then this element is a child element
(sub element or an embedded element like port
or interface).

The persistence associated with this element;
can be Persistent or Transient.

Property name

phase

presentation_diagrams

qualifier

role

role_note

role_type

run_state
scenarios

status

stereotype
tags

type
version

visibility

Property description

The phase the element is scheduled to be
constructed in; any string value.

List of presentation diagrams (diagrams
displaying the element).

A qualifier that can apply to the particular
connector end.

The particular connector end role.

Notes associated with the role of the particular
connector end.

The role type applied to the particular end of the
connector.

The element’s runstate list as a string.
List of scenarios defined for the element.

The status of the element, such as Proposed or
Approved.

The primary stereotype of the element.

List of tags defined for the element.

The element type (such as Class, Component).
The version of the element.

The Scope of the element within the current
Package. Valid values are: Public, Private,
Protected or Package.

35

	RepoDoc User Guide
	Table of Contents
	About
	Installing and running
	Add-in mode
	Standalone mode

	Working with application
	Document generator
	Package browser
	Application settings
	About dialog
	License key

	Understanding templates
	Objects
	Tags
	Filters

	Template examples
	Iterating packages
	Iterating elements
	Obtaining diagram images
	Redirecting output
	Notes format
	Generator profiles
	Escape sequences
	Post-processing

	Custom queries
	Miscellaneous objects and filters

	Reference
	Package
	Element
	Diagram
	DiagramObject
	Attribute
	Constraint
	Tag
	Operation
	Parameter
	Scenario
	ScenarioStep
	Connector
	ConnectorEnd

